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ABSTRACT
This paper presents the first field study of aimed movements
in graphical user interfaces, designed to get better insight
into pointing in the real (electronic) world and assess the va-
lidity of Fitts’ law in the wild. We unobtrusively collected
kinematic data from 24 users over several months, and seg-
mented it into a table of 2 million movements. We show
that Fitts’ law is indeed robust for modeling pointing perfor-
mance, provided that an adequate noise reduction process
is applied. We introduce the length-distance index (LDI)
to take into account the fact that many movements are not
straight, and we introduce an extension of Fitts’ law that in-
cludes an LDI term. We also show evidence of the effect
of cognitive tasks in pause and click time, and the sensitiv-
ity of differences in performance, e.g., across input devices,
to LDI. Altogether, these findings provide a firm ground to
better assess the validity of results obtained in the laboratory.

ACM Classification Keywords
H. Information Systems H.5 Information Interfaces and Pre-
sentation H.5.2 User Interfaces (H.1.2, I.3.6)

Author Keywords
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INTRODUCTION AND RELATED WORK
Target acquisition using a pointing device is one of the fun-
damental tasks in graphical user interfaces (GUIs). Since
Card et al.’s seminal work [4], a large body of research has
been dedicated to improving pointing performance through
new devices and/or interaction techniques. At the heart of
this research program lies Fitts’ law [8]. Fitts’ pointing para-
digm reduces target acquisition to a unidimensional task char-
acterized by two independent variables: target width (W )
and target distance (D). Fitts’ law1 predicts that the move-
ment time (MT ) to acquire a target is a linear function of the
task’s index of difficulty (ID):

MT = a+b× ID , where ID = log2

(
D
W

+1
)

. (1)

1The formulation in Equation 1 is not Fitts’ original one but
MacKenzie’s widely adopted Shannon formulation [21].

The index of difficulty fully characterizes the task: higher
values of ID, i.e. longer distances and/or smaller targets, re-
quire more time and are therefore “harder”. The intercept (a)
and the slope (b), on the other hand, depend on the context
of execution of the task, i.e. the user, the input device, etc.

Fitts’ law is the most successful quantitative law used in
HCI [21, 26] and has proved extremely robust across a wide
range of conditions. It has been extended, among other things,
to 2D pointing [22, 10, 11], 3D pointing [9] and multiscale
navigation [12]. It is used to compare input devices, e.g.,
[23], pointing techniques, e.g., [3] and types of users, e.g.,
[13]. It is even the basis for a standardized experiment used
to define the throughput of input devices by the International
Organization for Standardization (ISO) [18].

Fitts’ pointing paradigm focuses exclusively on the motor
control aspect of pointing. Users are instructed to execute
aimed movements as fast as possible, with a single target
prominently displayed. As a result, Fitts’ law models point-
ing in a GUI in the ideal situation where the user knows ex-
actly where the target is and points directly at it. This is
hardly a typical situation: pointing “in the wild” [16] in-
volves other factors than simply the size and position of the
target, such as deciding what is the target, dealing with in-
terference from the environment or planning for higher-level
tasks. Since so much of the HCI literature depends on the re-
sults of controlled experiments based on Fitts’ pointing para-
digm, it is legitimate to ask if we can expect the results of
such experiments to transfer to actual use in everyday GUIs.

The purpose of the work reported in this paper is to test the
ecological validity of Fitts’ law and more generally to study
and analyze aimed movements in the field as opposed to in
the laboratory. To our knowledge, it is the first field study
of pointing based on a long term collection of pointing data.
While field studies are common in HCI and tools exist to
collect user data, e.g., for usability studies [19], we are not
aware of any field study of the motor aspects of GUIs. For
example, Hurst et al. [14] log mouse data to distinguish be-
tween novice and skilled users, but their goal is to dynami-
cally adapt the software. Hutchings et al. [15] log window
management activity to study the use of multiple monitors,
but focus on higher-level tasks.
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Figure 1. Mouse trajectories (black) and clicks (red).

To conduct the study presented in this paper, we have logged
the activity of 24 users over several months with two soft-
ware probes and analyzed the collected data, which repre-
sents over 2 million aimed movements and about 1 billion
pixels covered by the cursor (about 219 miles or 352 km at
72 dots per inch). The remainder of this paper describes the
methodology we have used to collect and segment the data.
Then we proceed with the analysis itself. We introduce the
length-distance index (LDI) to take into account the fact that
many movements are not straight. We show that Fitts’ law is
indeed robust for modeling pointing performance. We then
find evidence that the cognitive part of pointing tasks affect
performance and correlate this degradation with LDI. This
leads to a generalization of Fitts’ law that includes an LDI
term. Finally, we compare performance across input devices
and widget types and conclude with some future work.

SYSTEM INSTRUMENTATION
We have developed two software probes targeting two dif-
ferent desktop environments: the X Window System under
Linux (X Window) and Apple’s Mac OS X (OS X). The
probes are unobtrusive, i.e. they run in the background and
do not require modifying any of the applications run by the
user. The information collected is a kinematic log similar
to that of VibeLog [15]: the successive on-screen positions
of the cursor with their timestamp, the state changes of the
pointing device buttons, and the position, size and stacking
order of the windows on screen. We also log the geometry
of the widget under the cursor at the time of each click, how-
ever for X Window this information is not always available
due to technical limitations.

X Window Probe
On X Window we used wmtrace, a freely available tool de-
veloped to monitor window management activities [5]. wm-
trace logs pointer events by monitoring the X Window pro-
tocol and window information by monitoring the window
management protocols: the latter include window decora-
tions (title bar, window buttons, window borders), the but-
tons in the taskbar and in the pagers. At the beginning of our
study (early 2005), it was only possible to log the geometry
and type of widget under the cursor for GTK applications.

Figure 2. Data recorded by the OS X probe: configuration of the
screen; aimed movement (black); target (green); drag movement (red).

We use wmtrace-view to replay the logs and display the win-
dow frames (without their content) and cursor movements.
Logs can be played back and forth as with a video player, and
a filtering system similar to DIVA [20] allows to jump, e.g.,
right before the next click on a close button. We have also
developed tools to visualize cursor movements and clicks
(Figure 1) and to extract various data tables from the logs.

Mac OS X Probe
On OS X, we have developed a probe that tracks the point-
ing device events using Apple’s IOKit framework to access
the low-level USB-HID drivers. The windows’ geometry is
collected when a button’s state changes using the accessi-
bility API provided by the ApplicationServices/HIServices
framework. Additional information such as stacking order
which is unfortunately not available through the accessibil-
ity API is collected using an undocumented functionality of
the ApplicationServices/CoreGraphics framework.

The geometry and type of the widget under the cursor is
also collected using the accessibility API when a button is
pressed. Sixty-nine widget “roles” (Button, MenuBar, Me-
nuItem, DockItem etc.) and eight “subroles” (MinimizeBut-
ton, ToolbarButton, etc.) are defined by the API, allowing us
to study subsets of the collected data, e.g., all the clicks on
the close button of a window. The collected data is sufficient
to reconstruct the complete cursor trajectory and the state of
the screen each time a button is pressed (Figure 2).

MOVEMENT SEGMENTATION
In order to study aimed movements in the real world, we
have to extract such movements from the kinematic data we
have collected, i.e. to segment the data into candidate move-
ments and select those that correspond to a pointing task.
This step is critical since the quality of the segmentation will
determine the validity of our future analyses. In particular,
we must be careful and avoid using hypotheses that underlie
our analyses, e.g., that aimed movements follow Fitts’ law,
to segment the source data.

An aimed movement begins when the user decides to reach
a target. This cognitive process does not leave an explicit
trace in the data we collect, so we need heuristics to iden-
tifiy the beginning of a movement. The end of an aimed
movement in GUIs almost always corresponds to an explicit
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selection action, i.e. a button press (or a button release in
the case of a drag). Some movements may not have such
an explicit marker, e.g., when hovering over an item to see
its tooltip. In the present study, we have decided to focus
on aimed movements that end with a button press (↓). We
exclude drags because they often correspond to non-aimed
movements such as scrolling or inking, and we exclude hov-
ering because we do not have a good heuristic to distinguish
it from pauses. The following sections describe in more de-
tail the segmentation process.

Beginning of Movement
To our knowledge, the literature does not address the identi-
fication of the beginning of an aimed movement: experimen-
tal protocols make the beginning of the movement explicit,
e.g., as the first movement after the display of the target.
In our case, given a button press at time t↓, we know that
the movement does not start before the button was last re-
leased t↑. The movement may have started after t↑ however,
for example if the user has moved the cursor to help with
reading or in case of external interruptions. Therefore we
need to analyze the cursor trajectory between t↑ and t↓.

Points where the cursor velocity is zero, called pauses2, are
of particular interest to segment the trajectory. Defining the
beginning of the movement as the last pause in the trajec-
tory does not work for two reasons. First, aimed movements
consist of one or several submovements [24], which may be
separated by (short) pauses. So a pause could be a submove-
ment transition. Second, we have noticed in our data as well
as in direct observations that users make long pauses shortly
before t↓, including immediately before t↓, as if they were
mentally confirming their action before clicking.

This leads us to use two parameters for the segmentation:
the stop time and the verification distance. Let us call p↓
the position of the cursor at t↓ and p the position of the cur-
sor at a pause. We define a stop as a pause longer than stop
time that occurs at a distance d(p, p↓) greater than the ver-
ification distance. The beginning of the movement is then
the last stop before t↓. Figure 3 illustrates a cursor trajectory
with time running horizontally and the distance along the tra-
jectory running vertically. There is one stop, P1, one pause
in the middle of the movement, P2, and two pauses close to
t↓, P3 and P4. Since P1 is the last stop before t↓, the begin-
ning of the movement is the end of that pause (tb). We call
movement time (MT ) the time between tb and t↓, verification
time (V T ) the total duration of the pauses that occur within
the verification distance, and click time (CT ) the duration of
the pause, if any, that occurs immediately before t↓. Finally,
we call pause time (PT ) the total duration of the pauses that
occur during the movement excluding those within the veri-
fication distance, i.e., in this example, P2.

Given these definitions, we need to pick adequate values for
the two parameters of the segmentation, stop time and veri-
fication distance. Hwang et al. [17] have studied the mouse
movements of motion-impaired users with able-bodied users
2A pause is a period of 50 ms or more with no cursor motion. This
delay is needed to account for the irregular sampling of the cursor.
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Figure 3. Segmentation of a cursor trajectory

as control. This study gives some statistics about “pauses”
between submovements for able-bodied users. Although no
precise definition of a pause is given, the mean number of
pauses in a movement was about 1 and the mean time of a
pause was about 70 ms. Using the kinematic data collected
for a previous Fitts experiment, we determined that with a
verification distance of 10 pixels, the mean pause time (PT )
was 75 ms and 95% of the pauses were less than or equal to
240 ms. The mean verification time (V T ) was 185 ms, with
592 ms for the 95% quantile.

For the study presented in this paper, we chose a verification
distance of 10 pixels and a stop time of 300 ms. As the stop
time seemed quite long, we used our replay tool to make sure
that it was a reasonable value through extensive observation
of the data. Note that the verification distance means that we
missed movements whose amplitude is less than 10 pixels.
We believe this is acceptable since such small movements
are of limited interest. Also, since we have no restriction
on V T , we may have extremely long movements where the
click time largely dominates the movement time.

End of Movement
As stated earlier, we only analyze movements that end with
a button press, making the segmentation of the movement’s
end trivial. In order to distinguish among different types of
final actions at the end of the movement, we measure the
duration (tdrag) and distance traversed (ddrag) while the but-
ton is pressed, i.e. between t↓ and the following t↑. Using
an analysis of the distributions of ddrag and tdrag, we deter-
mined thresholds to distinguish among the following final
actions: a drag (ddrag > 5 pixels) or a click (ddrag ≤ 5 pix-
els). Clicks are further subdivided into two categories: regu-
lar clicks (tdrag ≤ 300 ms), and long clicks (tdrag > 300 ms).
Finally, if the difference between t↑ and the following t↓ is
less than or equal to 250 ms, that movement is discarded and
the previous final action is concatenated with the current one
as a combination, such as a double click.

Since we plan to conduct a Fitts’ analysis of the aimed move-
ments that have been segmented, we need to know the geom-
etry of the aimed target. We call targeted movements those
movements for which we have reliable information about the
target, i.e. movements for which we can be fairly confident

3



that the widget under the cursor was the actual target. Our
data logs capture information about the widget under the cur-
sor. We use the widget type to classify the movement as a
targeted movement. For example, if the widget is a text area,
the actual target is likely to be a character in the text as op-
posed to the whole text area. Since we do not have informa-
tion about the actual target in this case, we do not record the
movement as being targeted and eligible for a Fitts’ analysis.

DATA SUMMARY
We now present the data we have collected and a first anal-
ysis of the results of the segmentation. We developed our
own software for the segmentation and thoroughly verified
the results. Analyses were conducted with the R3 and JMP4

software packages. After segmentation, our main data table
contains over 2 million rows (one per segmented movement).

Users Characteristics
Twenty-four users participated in the study, 20 men and 4
women, all right-handed. All users were either students, col-
leagues or engineers from different institutions and were ex-
pert computer users. Ten participants used their computers
in two configurations, one in three configurations. A config-
uration is a combination of computer, desktop environment
(for Linux users), pointing device (mouse or trackpad) and
number of screens. For example, a user may switch to an-
other environment under Linux; a laptop user may use a sec-
ond monitor and a mouse when working in his office. This
resulted in 36 different configurations, listed on the left of
Table 1: 9 participants and 13 configurations under X Win-
dow, 15 participants and 23 configurations under OS X.

Participants used the probing software from several weeks
to several months, and we regularly collected the log files.
The second part of Table 1 summarizes the results of the
segmentation to give an idea of the magnitude of the data
(the total duration of logged data is not included because it
would include long periods of time where users are away
from their computer): total number of movements (mvts),
sum of the straight distances between the beginning and end
of each movement (distance), total distance covered by the
cursor (length), length-distance ratio (LD) described below.
The last section of the table lists the same data for targeted
movements, i.e. movements for which we know the target.
These represent 22% of all movements. The last column
(mean Fitts equation) will be explained later.

Analysis of Final Actions
Each movement ends with a final action such as a click, a
double click or a long click. Most final actions (96.89±
3.39%) are carried out with the left button5. The variabil-
ity across configurations stems from the differences among
desktop environments. On OS X, most participants use a
single-button trackpad or mouse, or have not configured the
3http://www.R-project.org
4Version 6. SAS Institute Inc., http://www.jmp.com/
5We use the notation m±σ where m is the mean and σ the stan-
dard deviation of the value across configurations. Unless otherwise
noted, we first take the mean for each configuration and then com-
pute the mean and deviation across configurations.

right and middle buttons. Only one OS X user uses the right
button more than 1% of all clicks (3.07%). A few OS X
users use the middle button, with a maximum of 4.7% for
a user of Exposé, a window management function used to
navigate among windows. On X Window, the right button
is used in 4.43± 2.41% of all clicks and the middle button
in only 1.76±1.56% of all clicks. The middle button pastes
the primary selection and all of the X Window users know
this feature, with a maximum of 4.64% of all clicks.

A large majority of left button actions are single clicks, then
drags, then double clicks and then long clicks. On OS X
we have 77.06±8.02% clicks, 15.54±6.55% drags, 4.49±
2.53% double clicks, 1.42±1.29% long clicks and less than
2% other combinations, e.g., triple clicks. On X Window
we have 72.56±6.04% clicks, 17.75±4.66% drags, 4.71±
1.84% double clicks, 2.2± 1.29% long clicks and 2.75±
1.7% other combinations.

The Length Distance Ratio and Length Distance Index
One of the consequences of pointing in 2D is that the move-
ment trajectory is not fully determined by the specification
of the target as in a traditional 1D Fitts’ experiment. While a
straight line may not be the fastest way to reach a target be-
cause of the motor control involved in pointing, it is a good
approximation. To measure the deviation from this ideal tra-
jectory, we use the length-distance ratio (LD), computed as
the ratio of length of the movement to direct distance be-
tween the beginning and end points of the movement.

We observed that LD could be huge. We have 701 move-
ments with LD > 100 and 1.42% of the targeted movements
with LD > 10. These large values are mostly due to move-
ments with short distances: all but 8 movements with LD >
100 have a distance D < 80, and 75% of the movements with
LD > 10 have a distance D≤ 100. Obviously, it is easier to
obtain a large LD ratio when D is small.

Analysis of movements with large values of LD using the
wmtrace-view tool revealed patterns such as large circular,
spiral or zig-zag movements. These could correspond to a
user showing something on the screen, or to an attempt at
locating the cursor after having lost it (particularly on a large
screen or 2-monitor configuration) by moving it and then
proceeding with a standard aimed movement.
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Figure 4. LD (left) and LDI (right) distributions (D≥ 100) .

Table 1 lists the mean values of LD per configuration. Fig-
ure 4 (left) shows the distribution of LD across all aimed
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Configuration Aimed movements Targeted movements
# user env mouse scr mvts distance length LD mvts distance length LD mean Fitts Equation (100-perc.)
1 1 X (kde) mouse 1 32967 10683768 15934682 1.49 5747 3049126 4885954 1.6 812+182ID, r2 = 0.933
2 2 X (gnome) mouse 1 13544 4282891 5461624 1.28 4223 1293721 1640946 1.27 155+236ID, r2 = 0.908
3 2 X (kde) mouse 1 163369 45574797 58148641 1.28 29718 10700182 14309843 1.34 301+232ID, r2 = 0.948
4 3 X (gnome) mouse 1 167030 48664264 65893665 1.35 16762 7889304 10537697 1.34 723+112ID, r2 = 0.838
5 4 X (fvwm) mouse 1 36101 11195957 18840848 1.68 5877 2256248 3841300 1.70 575+164ID, r2 = 0.967
6 4 X (gnome) mouse 1 33708 9862120 17023748 1.73 4513 1854254 2945529 1.59 571+176ID, r2 = 0.968
7 5 X (gnome) mouse 1 119365 40725024 61681858 1.51 20205 8666703 12796705 1.48 690+159ID, r2 = 0.945
8 5 X (gnome) mouse 2 225162 72537849 112624577 1.55 11205 6135442 9255788 1.51 538+185ID, r2 = 0.962
9 6 X (icewm) mouse 2 123972 40177199 62753069 1.56 4977 2735721 4159078 1.52 716+179ID, r2 = 0.929

10 7 X (fvwm) trackpad 1 294703 86118404 110425445 1.28 51790 19171145 25180623 1.31 1041+168ID, r2 = 0.929
11 8 X (gnome) mouse 1 59836 16233819 21389240 1.32 1742 653191 834999 1.28 551+127ID, r2 = 0.950
12 9 X (gnome) mouse 2 90070 33051271 54114877 1.64 6647 3796564 5935634 1.56 531+203ID, r2 = 0.963
13 9 X (xfce) mouse 1 39592 11251573 18759402 1.67 1794 811253 1466646 1.81 363+220ID, r2 = 0.918
14 10 osx mouse 2 24554 7687145 10550344 1.37 9615 3651996 5019558 1.37 647+191ID, r2 = 0.955
15 10 osx NA 1 63660 18343411 25749711 1.40 25534 8402070 11670058 1.39 749+184ID, r2 = 0.953
16 11 osx mouse 2 13099 4456521 6245852 1.40 3136 1269682 1875338 1.48 509+166ID, r2 = 0.954
17 12 osx mouse 1 142874 52756643 74527356 1.41 63559 22740180 32659908 1.44 571+178ID, r2 = 0.950
18 12 osx trackpad 1 75186 19495234 25680509 1.32 28036 7254829 9777142 1.35 775+164ID, r2 = 0.954
19 13 osx mouse 1 18908 6177282 8562112 1.39 8746 3010629 4168809 1.38 765+209ID, r2 = 0.978
20 13 osx mouse 2 23001 7767334 11057052 1.42 12411 4128589 5933798 1.44 786+194ID, r2 = 0.967
21 13 osx trackpad 2 6440 2418337 3263012 1.35 3016 1143875 1557191 1.36 760+207ID, r2 = 0.978
22 14 osx mouse 2 1613 478595 754812 1.58 885 267756 415011 1.55 505+222ID, r2 = 0.969
23 14 osx NA 1 3589 831223 1297690 1.56 2074 490374 768597 1.57 815+156ID, r2 = 0.988
24 15 osx mouse 1 18173 7026508 8380156 1.19 3402 1201124 1493224 1.24 541+119ID, r2 = 0.906
25 15 osx NA 1 12499 3331979 4127239 1.24 5613 1438667 1801102 1.25 575+132ID, r2 = 0.929
26 16 osx mouse 1 66031 24725760 30360697 1.23 40029 15764719 19503241 1.24 504+144ID, r2 = 0.959
27 17 osx mouse 1 53782 16235427 27511387 1.69 22431 7330223 11960445 1.63 601+191ID, r2 = 0.948
28 18 osx mouse 1 45124 14996810 19902184 1.33 20860 8029698 10643716 1.33 640+154ID, r2 = 0.902
29 18 osx NA 1 15692 4863893 6331967 1.30 9696 3252079 4232195 1.30 701+192ID, r2 = 0.955
30 19 osx trackpad 1 58091 16156515 22373433 1.38 13646 4543651 6313030 1.39 524+144ID, r2 = 0.965
31 20 osx NA 1 2141 289900 370801 1.28 934 132188 167946 1.27 735+152ID, r2 = 0.976
32 21 osx mouse 1 11094 3602669 4997080 1.39 7036 2365282 3308390 1.40 469+171ID, r2 = 0.920
33 22 osx NA 1 22255 6174178 8223251 1.33 8290 2370337 3197145 1.35 742+120ID, r2 = 0.740
34 23 osx mouse 1 10464 3727996 6176327 1.66 3390 1337742 2200392 1.64 903+193ID, r2 = 0.947
35 24 osx mouse 1 10447 4470889 5867890 1.31 3716 1538955 2067458 1.34 584+159ID, r2 = 0.948
36 24 osx mouse 2 31387 12542161 17265467 1.38 9203 3827855 5395187 1.41 606+176ID, r2 = 0.967
total / mean±stddev 2129523 668915357 952628016 1.42±0.15 470458 174505365 243919633 1.43±0.14 627±168 +174±31ID, 0.941±0.044

Table 1. Summary of participants, configurations and collected data. Aimed movements are all the movements resulting from the segmentation.
Targeted movements are those for which we know the geometry and type of the target.

movements with D ≥ 100. It is highly skewed and looks
like a power law. Looking at the quantiles, we find that the
mean (across configurations and D ≥ 100) of the medians
is 1.15± 0.06. The mean of the first quartile is 1.05± 0.02
and the mean of the third quartile is 1.48±0.18. The differ-
ence between OS X and X Window is minor and we obtain
similar values when considering only targeted movements.
Thus, while a large fraction of the movements are almost
straight, a significant number are not. For example, 10% of
movements with D ≥ 100 have LD ≥ 2.46. We compared
this data to that from a previous controlled Fitts experiment
and found the mean value of LD to be 1.045±0.09 (median
= 1.025) with 90% of the movements having LD≤ 1.178.

The LD distribution looks like a power law, has a very long
tail and strongly depends on distance. It is thus difficult to
interpret. Instead, we propose to consider the length distance
index (LDI) defined as follows:

LDI = (
L
D
−1)

1
4

This transform of LD breaks the power law, normalizes the
small LD values and concentrates large LD values. Figure 4
(right) shows the resulting plot. The mean LDI is 0.66±0.06
and the median, close to the mean, is 0.61±0.07, matching
the peak of the distribution. As we will see later, this index
will prove useful in our analyses.
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Figure 5. Distribution of movement direction at the beginning of the
movement (top) and from end to end (bottom).

Variability in Movement Direction
Figure 5 plots two distributions of movement directions: the
direction at the beginning of the movement (top) and the
overall direction of the movement, i.e. the direction of the
straight line going through the beginning and end points of
the movement (bottom). While the aliasing due to the dis-
cretisation of cursor positions may explain the privileged di-
rections at the beginning of the movement (0, 90, 180, 270◦),
we do not explain the privileged directions (horizontal and
vertical) for the full movement.
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We find similar distributions when considering only targeted
movements and/or when removing movements with small
distances. However, when analyzing movements by widget
type, we find that some widget types elicit movements with
horizontal, vertical and sometimes diagonal directions be-
cause of their position on the screen (e.g., OS X Menu Bar
items or TaskBar buttons), the geometry of the widget (e.g.,
large and thin TitleBar vs. small TitleBarButton) or their po-
sition relative to the cursor (e.g., popup menu items).

Pointing Task Variables
By studying targeted movements only, i.e. those movements
for which we know the geometry of the target, we can study
the characteristics of the underlying pointing task, i.e. the
independent and dependent variables of Fitts’ law, with the
notable exception of error rate, since by definition all of our
movements are hits.

Since we are studying a 2D pointing task, we must decide
what distance, width and ID to consider. There are a num-
ber of generalizations of Fitts’ law to 2D in the literature,
including MacKenzie & Buxton [22], Accot & Zhai’s bi-
variate pointing [1] and Grossman & Balakrishnan’s prob-
abilistic model [10]. While the latter was not applicable to
our data since it requires hits and misses we tried several of
the other formulas and found little differences among them.
Therefore we opted for the simplest model, MacKenzie &
Buxton’s minimal size: the size of the target is Wmin, the
smallest dimension of the target, and the index of difficulty
is IDmin, computed from Equation 1 with Wmin instead of W .

Figure 6 shows the distribution of distance, Wmin and IDmin
for the targeted movements of our data set. Note the two
peaks around ID = 1 and ID = 5. Most of our targets have a
Wmin of about 20 pixels, corresponding to buttons, title bars,
scrollbars, etc. There are probably more targeted movements
with higher IDmin in real world pointing but they are not
accessible to our logging tools (we have no such targets with
our X Window probe and with OS X it is difficult to know
the real Wmin for widgets such as the text area).

Figure 6 also shows the distribution of click time (CT ), ver-
ification time (V T ) and movement time (MT ). The distribu-
tions of CT and V T are very similar. Indeed, CT contribute
80% of V T. More importantly, we note that CT is quite large:
after removing outliers by considering movements with a
movement time of 5 sec at most, the mean click time CT
is 277± 78 ms and 20% of these targeted movements have
CT ≥ 380 ms. This was confirmed by examining some of
the data with wmtrace-viewer. We will come back to this
observation later in the paper.

FITTING FITTS’ LAW
In this section, we investigate the role of ID on dependent
variables. We especially check its relationship to movement
time (MT ), i.e. whether Fitts’ law holds for our data. The
data set is the set of targeted movements, for which we have
target information.
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Figure 6. Distributions of the dependent and independent variables of
targeted movements.

Mean Fit
In a controlled experiment, continuous factors such as ID
are typically sampled over a fixed range. The dependent
variables are then averaged for each factor value and those
means are fitted. In a typical Fitts’ experiment, this pro-
cedure leads to very good linear fit of MT vs. ID, i.e. an
adjusted r2 close to 1.

As in our case ID is continuous, we have to partition the
observations along the ID axis before averaging MT . ID is
thus partitioned in q-quantiles (q intervals each containing
the same number of observations). The linear correlation
between the means of the factor and the dependent variable
over each quantile can then be computed. The process is
further refined by removing outliers: we restrict our analy-
sis to targeted movements that are less than 5 seconds long,
representing 98.90% of all targeted movements (470,458 ob-
servations). Outliers typically correspond to long or multiple
pauses during the movement (PT ) or at the end (CT ). Fig-
ure 7 shows the result of this process for one user.

Without averaging, the model has a poor fit: MT = 690 +
163 · ID (r2 = 0.117). With an averaging over 10-quantiles,
the model is MT = 679+166 · ID (r2 = 0.992) , and MT =
686 + 164 · ID (r2 = 0.978) with a 100-quantiles decom-
position. Finer decompositions lead to a degradation of r2

(r2 = 0.932 for 1000 quantiles; r2 = 0.727 for 10000 quan-
tiles) due to each quantile containing fewer samples (less
than 50 points in the last case). The same phenomenon oc-
curs when the data is fitted separately for each user. Table 1
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points are the means of each quantile.

(last column) lists the individual fits using a q-quantiles de-
composition such that q is the largest value with at least 200
observations per quantile. The average individual model is
MT = 627±168 +174±31 · ID (r2 = 0.940±0.044).

Effects of the 2D Index of Difficulty
The previous statistics were computed with the IDmin formu-
lation of ID [22]. We compared standard errors on the 100-
quantiles partition with various other formulas for a 2D ID.
IDW ′ , which uses the apparent width (the extent of the tar-
get intercepted by the movement support) [22] and IDp,ω,η,
Accot & Zhai’s bivariate pointing model [1], did not result
in better fits than IDmin. We also tried to use L, the length of
the movement, instead of D in the ID formulas, but it led to
worse r2 values despite the fact that L is a dependent variable
directly linked to the movement execution. We also tried
ID = D/Wmin (r2 = 0.414) and ID =

√
D/Wmin (r2 = 0.839)

as in Meyer et al. [24]. The second best formulation was in
fact Fitts’ original formulation with Wmin for the target ex-
tent: ID = log2(2D/Wmin) leads to r2 = 0.966!

Alternative Fits
Figure 8 shows a typical distribution of movement time for a
q-quantile. Since these distributions are skewed, the mean is
not a good representation of the values. The generalized ex-
treme value (gev) distributions6 provide a better match, and
we can use the location parameter (the position of the max-
imum) instead of the mean to represent MT [6]. Using this
definition of MT , the linear fit is even better: MT = 346 +
167 · ID, r2 = 0.991. This method significantly changes the
intercept of the model but the slope is very close to that of
the mean fit. Also, the gev shape parameter (characterizing
the skewness) decreases linearly with ID, from ≈ 0.4 to ≈ 0
while the scale parameter (characterizing the width of the
distribution) increases linearly from ≈ 300 to ≈ 600. This
6 The gev distributions can be defined as the limit distribution of
the minima (or maxima) of a large number of independent random
values from a single probability distribution. They are used, in gen-
eral, to model the minima of long sequences of random variables.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 8. Typical distribution of movement time for a percentile inter-
val (3.6≤ IDmin ≤ 3.85, 3179 values) for configuration # 17. The dashed
(red) line is the normal fit (mean 1271, deviation 696) and the plain
(green) one is the gev fit (location 931, scale 391 and shape 0.24).

means that as ID increases, the distributions are less skewed
and wider, getting closer to a normal distribution.

Another way to handle the non-normality of the MT distri-
bution is to study the quantiles for this axis. Figure 9 shows
the evolution of Fitts’ law parameters and r2 values when
only the p% fastest movements are considered for each per-
centile of the ID distribution. The fits are very good from the
10th percentile to the 95th percentile, indicating that the law
is robust. As we consider slower and slower movements,
the slope and intercept increase, showing the performance
degradation. Beyond the 95th percentile, the fit collapses,
meaning that Fitts’ law no longer applies.

Fitting Restricted Data Sets
The analyses of the previous sections lead to similar results
for each individual configuration (although in some cases,
the ends of the curves in Figure 9 are irregular instead of
dropping). The same analyses can be conducted on subsets
of the data. Table 2 shows Fitts’ law parameters for the mean
and gev fits by input device (mouse vs. touchpad), screen
configuration (1 vs. 2 screens) and environment (X Window
vs. OS X). It shows, for example, that the mouse and the
touchpad have similar slopes but quite different intercepts.
Pointing seems slightly faster with a single screen than with
a dual screen setup. There is no clear difference between
OS X and X Window.

Subset a mean/gev b mean/gev r2 mean/gev
All 686/359 164/163 0.978/0.971
Touchpad 884/540 162/175 0.959/0.952
Mouse 583/284 174/167 0.987/0.984
2 scr & Mouse 665/372 180/167 0.977/0.978
1 scr & Mouse 572/270 170/164 0.981/0.980
X Win. & Mouse 550/272 180/167 0.964/0.966
OSX & Mouse 603/287 170/167 0.991/0.992
LD < 1.2 369/189 171/157 0.977/0.980
& # pause < 3 400/213 147/141 0.982/0.972
& CT < 300 243/177 157/141 0.983/0.970

Table 2. Fitts parameters for subsets of the data (mean and gev 100-
percentile process). For the last three lines, conditions are cumulative.
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Figure 9. Fitts’ law parameters and r2 for MT quantiles (0.5 % steps).
The dashed (red) horizontal line represents the mean fit and the plain
(green) horizontal line represents the gev fit.

The last 3 lines of Table 2 show what happens when gradu-
ally constraining the data set according to movement proper-
ties. The first constraint (LD < 1.2) selects movements that
are almost straight. This substantially reduces the intercept.
The second constraint (# pause < 3) further selects move-
ments with no submovements. This reduces the slope. The
third constraint (CT < 300) further selects movements with
short click times. Together, these constraints amount to se-
lecting those movements that are closest to those observed
in a controlled experiment where movements are straight,
direct and without pause at the end. The slope and inter-
cept then match the typical values reported in the literature
for controlled experiments. Overall these analyses show that
Fitts’ law indeed holds in the wild.

Fitts’ Law and the Cognitive Part of a Pointing Task
Using a reduction process, we have seen in the previous sec-
tions that Fitts’ law can adequately model in situ pointing.
The difference with values reported for controlled experi-
ments is mainly the magnitude of the intercept: real-world
pointing is slower than that observed in the lab. Several fac-
tors can explain this difference: first, in everyday pointing
users are not instructed to point “as fast as possible”; sec-
ond, pointing can be disturbed by external factors, such as
being interrupted by a phone call or speaking to someone;
and finally, pointing in the real world involves cognitive ac-
tivities that are not related to the motor control itself, such as:
(i) making a choice, e.g., when answering a dialog box; (ii)

finding an item, e.g., in a menu or in the taskbar; (iii) dou-
ble checking before a dangerous action , e.g., when closing
a window or deleting a file. Such cognitive activities may
take place during the movement [4] and are likely to inter-
fere with motor control and therefore pointing performance.
While we do not have direct traces of this cognitive activity,
we can search for clues in our data.

Observation of movement ends shows that users often spend
a fairly long time before clicking once they have stopped
in the target. Analysis of variance shows that CT and V T
depend on target size and, more surprisingly, on distance
(CT and V T decrease when W and D increase). However,
these dependencies seem to be weak; we cannot find, and
do not think there is any, robust law that can predict CT
and V T based on the geometric properties of a pointing task.
Since we do not have a motor-control explanation for these
long click and verification times, and since they are not ob-
served in traditional Fitts’ experiments, we strongly suspect
that they are due, at least in part, to cognitive activity during
pointing.

Another measure that may indicate cognitive activity during
the movement is pause time (PT ). We found a very strong
correlation between PT and LD, i.e. pause time is longer
when movements are not straight. Using the length-distance
index LDI instead of LD, we found a very good linear cor-
relation between PT and LDI: PT = 4.753 + 318.2 · LDI,
r2 = 0.990 (10-percentile mean fit for all the data) and PT =
−4.667±54.19 + 309.9±82.68 · LDI, r2 = 0.919± 0.053 (10-
percentile mean fit by configuration). We verified on subsets
of our logs that pauses often correspond to changes in di-
rection of movement, which could explain this correlation.
These changes are most likely due to cognitive activity, e.g.,
changing one’s mind while reaching for a target.

Since LDI correlates with longer pauses and therefore longer
movement time, we are interested in combining it with ID
to create a combined index of difficulty (CID) that accounts
both for the difficulty of the motor task and the “distrac-
tion” caused by cognitive activity. Using an ANOVA for
the model MT ∼ ID+LDI + ID ·LDI with the configuration
as random factor, we found, as expected, a strong effect of
ID (F1,465275 = 106852, p < 0.001), an even stronger effect
of LDI (F1,465276 = 125626, p < 0.001) and an ID× LDI
interaction effect (F1,465263 = 16328, p < 0.001).The inter-
action between ID and LDI can be easily explained in terms
of Fitts’ Law: as LDI increases the slope and intercept of the
Fitts equation increase as well. This is particularly visible
if we use the measure MT −V T : Figure 10 shows the suc-
cessive fit lines when we restrict the data to successive LDI
intervals (8-percentile).

Analysing the results of the ANOVA leads to the following
definition of CID:

CID = ID + 8 ·LDI + 4 · ID ·LDI

which gives the following model: MT = 362 + 49 ·CID,
r2 = 0.302 for the complete data set (vs. r2 = 0.117 when
fitting with ID). Since we have shown that CT and V T in-
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Figure 10. Fit lines for successive LDI intervals. Next to each fit line is
the Fitts equation, r2 value and LDI interval.

troduce noise that we cannot yet control, we obtain even bet-
ter fits with MT −CT (r2 = 0.497 vs. 0.207 with ID) and
MT −V T (r2 = 0.541 vs. 0.231 with ID). We obtain simi-
lar improvements when restricting the fit to individual users,
input device, and configuration. Since straight movements,
which are the norm in controlled experiments, have an LID
close to zero, these results indicate that CID is a possible
generalization of Fitts’ ID.

COMPARATIVE PERFORMANCE ANALYSIS
We now turn to a comparative analysis of pointing perfor-
mance. First we analyze differences among configurations
by looking at the effect of desktop environment, input de-
vice and number of screens. Then we analyze the effect of
the targeted widget’s type.

Desktop Environment, input device and Screens
We already noted in our Fitts’ analysis a significant differ-
ence in performance between mouse and touchpad in favor
of the mouse. In order to analyze the effects of both the
desktop environment and input device, we performed a full
factorial ANOVA of movement time with ID, LDI, Input
and Env as factors and User as a random factor (some users
have used both a mouse and touchpad).

We found no significant effect of Env on movement time.
This may be seen as a proof of the common wisdom that
desktop environments have become very similar, as well as
a testament to the robustness of our logging tools.

We found strong simple effects of ID, LDI and Input. A
post-hoc test reveals a difference in mean of 369 ms between
the mouse and touchpad. However, we found an interaction
between Input and Env. For the touchpad, the mean move-
ment time is 533 ms for X Window and 205 ms for OS X
but there is no significant difference for the mouse. How-
ever, this difference vanishes if we remove the click time
(CT ) and use MT −CT as measure: there is no difference
between the X Window user and all the mouse users. On the
other hand, we still see a significant difference between the
touchpad and the mouse for OS X users. We must be careful

however in interpreting these results since there is only one
X Window touchpad user.

We further investigate interactions between ID, LDI and In-
put by restricting our analysis to OS X users. We find ID×
Input and LDI × Input interaction effects. In both cases,
as the index (ID or LDI) increases, the difference between
mouse and touchpad becomes smaller. If we take MT −CT
as a measure, we find strong simple effects of ID, LDI and
Input and a difference in means of 105 ms. We find no in-
teraction between ID and Input but an interaction between
LDI and Input that can be explained by the reduction of the
difference between mouse and touchpad for large LDI.

It is not surprising that, as LDI grows, the difference between
mouse and touchpad shrinks: as movements are less straight
and less efficient, the inherent capabilities of the input device
have less impact on performance. It is more surprising how-
ever that the same thing happens with ID. This is consistent
with Yun & Lee [27] but in contradiction with Epps [7] and
Amer et al. [2]. A possible interpretation is that OS X has an
optimized transfer function for the touchpad. Note also that
50% of the difference is contained in the click time showing
the importance of click techniques for touchpads [23].

We found no robust effect when investigating the effect of
screen configuration even when considering single-screen
movements vs. cross-screen movements. It is clear however
that in a dual screen configuration, there is a primary screen
where almost all clicks are performed.

Widget Type
We now turn our attention to the effect of widget type. The
results presented here are based on mouse movements only,
however they are still valid when considering the complete
data set, or touchpad users only, or each user separately. We
used ID, LDI and Widget as factors and the configuration as
a random factor and performed several ANOVAs with dif-
ferent subsets of widget types.

First, we focus on widgets with different shapes: the window
title bar (long rectangle) and buttons (square), the window
border (thin rectangle) and the resizing grip (small triangle
at the bottom right of the window). We test two definitions
of Fitts’ index difficulty for 2D pointing: IDmin [22], which
uses the smallest dimension, and ID2,1,1 [1], which takes into
account the aspect ratio7.

With ID = IDmin, we find significant simple effects of ID,
LDI and Widget and small Widget× ID and Widget×LDI
interaction effects caused by the window border becoming
faster than the other widgets as ID or LDI increases. A
post-hoc Tukey HSD test shows the following ordering (>
means faster with the difference indicated in parentheses):
border (42±13 ms) > title bar (74±13 ms) > resizing grip
(175± 13 ms) > window button. This shows a substantial
difference in mean of 248±13 ms between the window title
bar and the window buttons.

7ID2,1,1 = log2(
√

(D/W )2 +(D/H)2 +1)
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With ID = ID2,1,1, we find similar simple and interaction
effects, but no significant difference in mean between bor-
der and resizing grip and between resizing grip and title bar
(we still have a small difference between title bar and bor-
der: 49± 12 ms). There is still a large difference between
the title bar and buttons (169± 5 ms for a grand mean of
1500 ms). This difference does not depend on ID but de-
creases as LDI grows. We believe this difference can only
be caused by cognitive activity. Indeed, closing or iconify-
ing a window has more dire consequences than moving or
resizing it, in that the cost of undoing the action is higher.
This explanation is supported by the fact that the difference
is mostly concentrated in the click time CT (135±8 ms).

We then test the particular case of widgets that are on the
border of the screen, such as the menu bar or the dock icons
on OS X: since the cursor is blocked by the border of the
screen, these widgets effectively have a semi-infinite size
and should be easier to target. We find a significant differ-
ence in mean of 146±5 ms. Again, this difference is smaller
with larger LDI values (down to zero for large LDI) and there
is a significant but small interaction with ID (less that 10 ms
difference between ID = 1 and ID = 7). As before, we ob-
serve that the difference in movement time is mostly due to
the verification time. Overall, our data supports the hypoth-
esis that targets on the border of the screen improve pointing
performance by allowing overshooting.

Another special type of widget are menu items. First, popup
menus appear next to the cursor and have low IDs, which
should improve performance. Second, long menu items of-
ten require visual scanning, which should impair performance.
We found evidence of these two hypotheses: menu items are
one of the fastest widgets for small ID and one of the slow-
est for large ID, i.e. we observe a strong interaction of ID by
Widget when considering the menu item widget type against
the other types. This supports designs such as the split menu
[25].

CONCLUSION
We have described what we believe is the first field study of
aimed movements. Using two unobtrusive software probes,
we have collected kinematic logs from 24 users in 36 hard-
ware/software configurations over several months. We have
described our strategy to segment this data into a collection
of over 2 million aimed movements and a subset of about
half a million targeted movements, i.e. movements for which
we know the geometry and type of the target. The goal
of this study was to gain insight into real-life pointing and
assess the validity of the results of controlled experiments
of pointing techniques in the real world. In particular, we
wanted to test the validity of Fitts’ law in the wild.

The results of our study can be summarized in the follow-
ing findings. First, we introduced the length-distance index
(LDI) as a complementary tool to the index of difficulty (ID)
in order to better understand aimed movements that are not
straight. Second, we showed that Fitts’ law was a good pre-
dictor of mean performance even when using separate quan-
tiles and gev locations, demonstrating the remarkable robust-

ness of the law. This strongly supports the fact that results
gathered in the lab with controlled Fitts’ experiments can be
valid in the field. However, we also measured large inter-
cepts of Fitts’ regression lines and found a lot of noise in the
data. We used the LDI to obtain better fits, first by filtering
out movements with large LDI, then by introducing a vari-
ant of Fitts’ law that includes an LDI term. Since movements
are mostly straight in Fitts’ studies (LDI = 0), this new law
arguably generalizes Fitts’ law. Finally, we found unexpect-
edly high values for pause time (PT ) and click time (CT ),
which we attribute to the cognitive load associated with the
task at hand. We found a linear correlation between pause
time (PT ) and the length-distance index (LDI) and we of-
ten observed that the differences in pointing performance
decreased as LDI increased. We also found that CT was
strongly dependent on the nature of the target.

While this work is mainly theoretical, it has immediate prac-
tical applications. For example, many movements with high
LDI correspond to users “shaking the mouse” to find the cur-
sor, typically after a long pause, calling for more efficient
ways of locating the cursor, especially for large screens and
multiple-display settings. Reducing click time is also an in-
teresting challenge as it does not seem to be linked to pure
motor control. We intend to pursue this work by analysing
other aspects of the data, by testing the combined index of
difficulty in an experimental setting and by using our find-
ings to guide the design of new interaction techniques.
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